A Simple Condition for the Existence of Transversals
نویسنده
چکیده
Hall’s Theorem is a basic result in Combinatorics which states that the obvious necesssary condition for a finite family of sets to have a transversal is also sufficient. We present a sufficient (but not necessary) condition on the sizes of the sets in the family and the sizes of their intersections so that a transversal exists. Using this, we prove that in a bipartite graph G (bipartition {A,B}), without 4-cycles, if deg(v) ≥ √ 2e|A| for all v ∈ A, then G has a matching of size |A|.
منابع مشابه
Permanent rank and transversals
We use the polynomial method of Alon to give a sufficient condition for the existence of partial transversals in terms of the permanent rank of a certain matrix.
متن کاملAnother Form of a Criterion for the Existence of Transversals
In [2] we proved a necessary and sufficient condition for a family of sets to possess a transversal. We now prove a slightly more concrete version of this result, using the function q of [4].
متن کاملA General Criterion for the Existence of Transversals
We present a necessary and sufficient condition for a family of sets to possess a transversal. Its form follows that of P. Hall's theorem: a family has a transversal if and only if it does not contain one of a set of 'forbidden' substructures.
متن کاملOn the intersection of three or four transversals of the back circulant latin squares
Cavenagh and Wanless [Discrete Appl. Math. 158 no. 2 (2010), 136–146] determined the possible intersection of any two transversals of the back circulant latin square Bn, and used the result to completely determine the spectrum for 2-way k-homogeneous latin trades. We generalize this problem to the intersection of μ transversals of Bn such that the transversals intersect stably (that is, the int...
متن کاملRainbow Hamilton cycles and lopsidependency
The Lovász Local Lemma is a powerful probabilistic tool used to prove the existence of combinatorial structures which avoid a set of constraints. A standard way to apply the local lemma is to prove that the set of constraints satsify a lopsidependency condition and obtain a lopsidependency graph. For instance, Erdős and Spencer used this framework to posit the existence of Latin transversals in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.05181 شماره
صفحات -
تاریخ انتشار 2016