A Simple Condition for the Existence of Transversals

نویسنده

  • Arindam Biswas
چکیده

Hall’s Theorem is a basic result in Combinatorics which states that the obvious necesssary condition for a finite family of sets to have a transversal is also sufficient. We present a sufficient (but not necessary) condition on the sizes of the sets in the family and the sizes of their intersections so that a transversal exists. Using this, we prove that in a bipartite graph G (bipartition {A,B}), without 4-cycles, if deg(v) ≥ √ 2e|A| for all v ∈ A, then G has a matching of size |A|.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permanent rank and transversals

We use the polynomial method of Alon to give a sufficient condition for the existence of partial transversals in terms of the permanent rank of a certain matrix.

متن کامل

Another Form of a Criterion for the Existence of Transversals

In [2] we proved a necessary and sufficient condition for a family of sets to possess a transversal. We now prove a slightly more concrete version of this result, using the function q of [4].

متن کامل

A General Criterion for the Existence of Transversals

We present a necessary and sufficient condition for a family of sets to possess a transversal. Its form follows that of P. Hall's theorem: a family has a transversal if and only if it does not contain one of a set of 'forbidden' substructures.

متن کامل

On the intersection of three or four transversals of the back circulant latin squares

Cavenagh and Wanless [Discrete Appl. Math. 158 no. 2 (2010), 136–146] determined the possible intersection of any two transversals of the back circulant latin square Bn, and used the result to completely determine the spectrum for 2-way k-homogeneous latin trades. We generalize this problem to the intersection of μ transversals of Bn such that the transversals intersect stably (that is, the int...

متن کامل

Rainbow Hamilton cycles and lopsidependency

The Lovász Local Lemma is a powerful probabilistic tool used to prove the existence of combinatorial structures which avoid a set of constraints. A standard way to apply the local lemma is to prove that the set of constraints satsify a lopsidependency condition and obtain a lopsidependency graph. For instance, Erdős and Spencer used this framework to posit the existence of Latin transversals in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.05181  شماره 

صفحات  -

تاریخ انتشار 2016